Dr. Marques Sophie Office 519 Number theory

Spring Semester 2014 marques@cims.nyu.edu

Problem Set #6

Recall that: a module P is projective if and only if for every surjective module homomorphism $f: M \to P$ there exists a module homomorphism $g: P \to M$ such that $f \circ g = id_P$.

Exercise 10 p 23 of [N]

The fractional ideal \mathfrak{a} of a Dedekind domain \mathcal{O} are projective \mathcal{O} -modules, i.e given any surjective homomorphism $f: M \to N$ of \mathcal{O} -modules, each homomorphism $g: \mathfrak{a} \to N$ can be lifted to a homomorphism $h: \mathfrak{a} \to M$ such $f \circ h = g$.

Solution:

Given a surjective homomorphism $f: M \to \mathfrak{a}$ of \mathcal{O} -modules. We need to construct a homorphism $g: \mathfrak{a} \to M$ such $f \circ h = Id_M$. We know that in a Dedekind domain any fractional ideal is invertible. In particular, \mathfrak{a} is invertible so that there is \mathfrak{a}^{-1} such that $\mathfrak{a}^{-1}\mathfrak{a} = \mathcal{O}$. In particular, there is $x_i \in \mathfrak{a}$ and $y_i \in \mathfrak{a}^{-1}$, $1 = \sum_{i=1}^n x_i y_i$. As f is surjective, we can pick $e_i \in M$ with $f(e_i) = x_i$. Now define the following map:

We then calculate for $x \in \mathfrak{a}$:

$$f \circ g(x) = f(\sum_{i=1}^{n} (xy_i)e_i)$$

= $\sum_{i=1}^{n} (xy_i)f(e_i)$
= $x \sum_{i=1}^{n} (x_iy_i)$
= x

Exercise 6 p 38 of [N]

Let \mathfrak{a} be an integral ideal of K and $\mathfrak{a}^m = (a)$. Show that \mathfrak{a} becomes a principal ideal in the field $L = K({}^m\sqrt{a})$, in the sense that $\mathfrak{a}\mathcal{O}_L = (\alpha)$. Solution:

If m = 1 the result is obvious. Otherwise, $(\mathfrak{aO}_L)^m = \mathfrak{a}^m \mathcal{O}_L = (a)\mathcal{O}_L = (a)$. Now, clearly $(^m\sqrt{a})^m = (a)$. So that $(\mathfrak{aO}_L)^m = (a^{1/m})^m$ as ideal of L. Finally, $(^m\sqrt{a}) = \mathfrak{aO}_L$, from the unicity of the decomposition in prime ideals.

Exercise 7 p 38 of [N]:

Show that, for every number field K, there exists a finite extension L such that every ideal of K becomes a principal ideal. **Solution:**

Since Cl_K is finite, let $m = |Cl_K|$, we can consider a finite number of representative of the class in Cl_K . Let say $I_1, ..., I_m$ and by Lagrange theorem, $[I_i^m] = e$ that is there is $a_i \in K$ such that $I_i^m = (a_i)$, for any $1 \leq im$ and by the previous exercise, I_i become all principal in the finite extension $L = K(m\sqrt{a_1}, ..., m\sqrt{a_m})$. Now, let I a ideal of K, then $I \sim I_i$, for some i, so that there is a $a \in K$, such that $I = (a)I_i$, and $I = (a^m\sqrt{a_i})$ in L. As a consequence, any